Focusing light inside scattering media with magnetic-particle-guided wavefront shaping.

نویسندگان

  • Haowen Ruan
  • Tom Haber
  • Yan Liu
  • Joshua Brake
  • Jinho Kim
  • Jacob M Berlin
  • Changhuei Yang
چکیده

Optical scattering has traditionally limited the ability to focus light inside scattering media such as biological tissue. Recently developed wavefront shaping techniques promise to overcome this limit by tailoring an optical wavefront to constructively interfere at a target location deep inside scattering media. To find such a wavefront solution, a "guide-star" mechanism is required to identify the target location. However, developing guidestars of practical usefulness is challenging, especially in biological tissue, which hinders the translation of wavefront shaping techniques. Here, we demonstrate a guidestar mechanism that relies on magnetic modulation of small particles. This guidestar method features an optical modulation efficiency of 29% and enables micrometer-scale focusing inside biological tissue with a peak intensity-to-background ratio (PBR) of 140; both numbers are one order of magnitude higher than those achieved with the ultrasound guidestar, a popular guidestar method. We also demonstrate that light can be focused on cells labeled with magnetic particles, and to different target locations by magnetically controlling the position of a particle. Since magnetic fields have a large penetration depth even through bone structures like the skull, this optical focusing method holds great promise for deep-tissue applications such as optogenetic modulation of neurons, targeted light-based therapy, and imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light

Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubb...

متن کامل

Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light.

Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubb...

متن کامل

Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media

Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, ultrasonically guided wavefront shaping technologies have been developed to address this limitation. So far, the focusing resolution of most implementations has been limited by acoustic diffraction. Here, we introduce nonlinear photoacoustically guided wavefron...

متن کامل

Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation

Light scattering inhibits high-resolution optical imaging, manipulation, and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide a high gain, high speed, and a high focal peak-tobackground ratio. However, none of the previous ...

متن کامل

Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media.

Time-reversed ultrasonically encoded optical focusing measures the wavefront of ultrasonically tagged light, and then phase conjugates the tagged light back to the ultrasonic focus, thus focusing light deep inside the scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rates of conventional cameras. In addition, these cameras used most of their b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optica

دوره 4 11  شماره 

صفحات  -

تاریخ انتشار 2017